

Wetterturnier Wordpress Plugin

This is the documentation for the
wetterturnier.de [http://www.wetterturnier.de]
data repository which contains several tools to process and extract
data. The code in this repository is relatively specific but might
be a good starting point if you would like to setup a similar system.

What is “Wetterturnier”

The “Berliner Wetterturnier” as it has been known as in the beginning was
launched in the year 2000 at the Institute of Meteorology at the FU Berlin.
Since 2005 five cities in Central Europe are included.

Wetterturnier [http://wetterturnier.de] is a platform where hobby meteorologists,
experts and statistical forecast model developer battle against each other. The
goal is to predict a set of meteorological variables, such as sunshine duration, wind speed,
or temperature as good as possible for the consecutive two days.

This plugin is the frontend core of the whole system providing full wordpress integration
(user management, messaging services, forums) and the platform where our users can submit
their forecasts/bets. Furthermore this plugin provides live ranking tables, a leader-board,
a data archive, and access to a set of important data sets such as observations and forecast maps.

[image: Screenshot Frontend]
Please note that this is only one part of the system. To get the whole system running
the Wetterturnier Wordpress Plugin [https://github.com/retostauffer/wp-wetterturnier].
For more information please visit the documentation on readthedocs <http://wetterturnier-backend.readthe
docs.io/en/latest/overview.html>_.

Wetterturnier Data Tools

This repository is part of the Wetterturnier.de [http://www.wetterturnier.de] system.
The documentation for this repository can be found on readthedocs [http://wetterturnier-data.readthedocs.io/en/latest/]

GISCobservations

virtualenv --no-site-packages venv
source venv/bin/activate # activate virtualenv
pip install mysqlclient # database access
pip install matplotlib # For the synop symbols

export BUFR_TABLES=/path/to/your/bufr/tables
cd GISCobservations
python bufr.py

License Information

The software in this repository is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version. The full LICENSE file is included in the repository
and/or can be found on gnu.org [https://www.gnu.org/licenses/gpl-3.0.txt].

Parts and Pieces

Overview

This is an overvie over the whole Wetterturnier.de [http://www.wetterturnier.de]
system wich consists of a set of different tools split into separate
repositories.

Note

You are currently looking at the documentation of the
wetterturnier-data repository documentation
(blueish box bottom right on the image below).

All parts (except data sources and logins, of course) are made publicly available
trough <github [https://github.com/retostauffer]. Some links to the repositories:

	Wetterturnier Wordpress Plugin:
github repository [https://github.com/retostauffer/wp-wetterturnier],
documentation on readthedocs [http://wetterturnier-wordpress-plugin.readthedocs.io/en/latest/].
As the name says: contains the wordpress plugin. Depends on the “Wetterturnier Backend”
to get the points and rankings.

	Wetterturnier Wordpress Theme:
github repository [https://github.com/retostauffer/wp-wetterturnier-theme],
contains the theme used on Wetterturnier.de [http://www.wetterturnier.de],
a Wordpress child theme based on the
Wordpress twentyfourteen theme [https://wordpress.org/themes/twentyfourteen/].

	Wetterturnier Backend:
github repository [https://github.com/retostauffer/wetterturnier-backend],
documentation on readthedocs [http://wetterturnier-backend.readthedocs.io/en/latest/],
contains the python code to compute automatons, points, and rankings.

	Wetterturnier Data Backend (the one you are currently looking at):
github repository [https://github.com/retostauffer/wetterturnier-data],
this documentation on readthedocs [http://wetterturnier-data.readthedocs.io/en/latest/].
Contains a set of tools to process/prepare data. Relatively specific for
Wetterturnier.de [http://www.wetterturnier.de] but might be a starting point.

[image: System overview (all together).]

CreateSynopSymbols

This will be outdated soon when no weather type reports are delivered anymore.
This is very quick’n’dirty code to procude synop style images using python.
For Marcus Bayer this was always the most important element of Wetterturnier
wherefore I’ve implemented it using this code.

The script reads trought he observation database (see table-live) to
get the latest observations for all stations configured in the
config.conf file. For each station and observed time a png figure
will be produced once (won’t be re-created if output figure exists).

Uses the synopsymbol.synopsymbol, see below.
Requires the python matplotlib package to be installed.

To get the script run:

Make a copy of the config template file and adjust
the settings, namely mysql database access information
and input/output directories in the [essentials] and [additionals]
section.
cp config.conf.template config.conf

Execute script (keep care using the virtualenv if you do so)
python CrateSynopSymbols.py

Class: synopsymbol

	
class synopsymbol.synopsymbol(config)

	Synopsymbol class extending the drawbarb class drawing the
vector wind barbs onto the figure.

	
__init__(config)

	Initialize a synopsymbol class. Inputs needed: config from
@see readconfig.readconfig. It contains the fonts and other stuff
we need later.
@return Returns the initialized class itself.

	
_open_figure_()

	Helper function opening the new matplotlib.pyplot.figure
object, setting axis properly.
@param No input parameters, all needed is on self.config.
@return No return, stores axis and figure handler onto
self.ax and self.fig.

	
_save_figure_(file)

	Saves the figure self.fig into the output file specified.
@param file. Required, string. Name of the output file.
@return No return.

ForecastProducts

Todo

Documentation has to be added (Reto).

GISCobservations

This thing is named GISC observations as we get some data from
the DWD GISC interface. Ideally all data would come from this one
system, however, that was not possible (did not got access, furthermore
station 11320 Universitaet Innsbruck is not included in the GISC at all).

Note

There are is a version extractBUFReccodes.py which has the
very same structure as extractBUFRperl.py and makes use of the
ecmwf eccodes python library to extract the BUFR files. This is
non-finished code! However, in case one has to switch over to
the eccodes library one might use this draft. All you would have to
do at the end is to change the include in the bufr.py file.

However, the documentation only provides information about the
currently used extractBUFRperl.py script.

The worker script

The main script to be executed is bufr.py. If started without
any input arguments the default input folders will be checked for new
incoming bufr files. There are two incoming folders specified via
config.conf. Depending on the folder where the files are stored
the data get different labels in the database, either essential (means
open data, can be used and downloaded by everyone) or additional (closed
data, access will only be given to logged in users when using the
Wetterturnier Wordpress Plugin [https://github.com/retostauffer/wp-wetterturnier].
For both data types (essential and additional) an incoming directory (indir)
and an outgoing directory (outdir) is specified in the config.conf file.

The script bufr.py automatically checks the incoming folders for new files.
If there are new files the files are processed using extractBUFRperl::extractBUFR
and moved into the output directory. The will be stored either in a subfolder
error if the BUFR file could not have been extracted/processed or in a subfolder
processed if successfully processed.

To run the script please note that the corresponding BUFR tables have to be
available. They can either be located in the system wide default folder or
specified via environment variable BUFR TABLES.
Note that some BUFR files require custom BUFR TABLE files (e.g., for a specific
subcentre using custom BUFR entries). WMO style BUFR TABLES can for example be
downloaded on the ECMWF website [https://software.ecmwf.int/wiki/display/BUFR/BUFRDC+Home].
WARNING: the BUFR tables in this archive have the suffix .txt while
bufrread.pl is looking for .TXT files. Simple solution: link all your files
.txt to .TXT and try.

To get this script to run:

Make a copy of the config template file and adjust
the settings, namely mysql database access information
and input/output directories in the [essentials] and [additionals]
section.
cp config.conf.template config.conf

If required: set BUFR TABLES environment variable
export BUFR_TABLES=/path/to/your/bufrtables

Execute script (keep care using the virtualenv if you do so)
python bufr.py

For testing a specific file can be specified using the -f/--file flag.
In this case this file will be read and not moved after execution.

Processing af specific bufr file (keep care using the virtualenv if you do so)
python bufr.py --file <path/to/buf/file>

The cleanup script

To keep the databaes small only a subset of data will be archived while the
live table is a rolling table containing the last N days of data only.
Furthermore, old unused BUFR files should be removed from the disc.
The CleanUp.py script does this job using the configuration from the
config.conf file (mysql access config and the [cleanup] section).

To get the script running:

Make a copy of the config template file if you havn't done this
yet and adjsut the settings, namely mysql database access information
and input/output directories in the [essentials] and [additionals]
section. For the archive table: check the list of stations in the
[cleanup] section which should be moved from the live table (``srctable``)
to the archive table (``dsttable``).
cp config.conf.template config.conf

Run the script
python cleanup.py

The script …

	Reads the config.conf file

	Creates an object of class cleanup
* Deletes old raw (BUFR) files from the disc
* Moves a subset of observations from the live table into the archive table
* Removes old observations from the live table

Class: cleanup

This is the class used by the CleanUp.py.

	
class cleanup.cleanup(config)

	Setting up the class to clean files and databases used for
processing incoming observations.

	Parameters

	config (str) – Name of the config file to read.

	
cleanup_live_table()

	We have a live and an archive table. These two tables are
defined in the config.conf file. Here we are deleting all
observations from the live table (‘srctable’) which are older
than about ‘db_days’ days (as well defined in the config.conf file).

	
closeDB()

	Closing database.

	
delete_old_raw_files()

	Method deleting files from disc in the directory ‘outdir’ as
defined in the config.conf file. We do NOT decide between
synop/bufr or processed/error here. Just kill them if they
are older than ‘file_days’ as specified in config.conf.

	
getOldFiles(dirPath, maxage, postfix)

	List old files on disc.

	Parameters

	
	dirPath (str) – Path to the directory which should be checked.

	maxage (int) – Timestamp, files older than this will
be considered to be old and marked for deletion.

	postfix (str) – File postfix. Only files where the postfix
matches (not case sensitive) will be considered.

	Returns

	A list of all files under dirPath older than days.

	Return type

	list

	
live_database_to_archive()

	I would like to store some observation data longer than just
a few days - however - we wont create a copy of the WMO
observation data archive or simething. Therefore we are just
archiving some stations as defined in ‘cleanup:stations’ in
the config.conf file. Move them from ‘cleanup:srctable’ to
‘cleanup:dsttable’ (see config.conf file).

Class: extractBUFR

Main class, extracting observations from BUFR data files using the
Geo::BUFR [http://search.cpan.org/dist/Geo-BUFR/lib/Geo/BUFR.pm] bufrread.pl
script. bufrread.pl converts the BUFR files into ASCII whcih will be parsed
by extractBUFRperl::extractBUFR and stored into the database.

	
class extractBUFRperl.extractBUFR(file, config, stint, verbose, filterfile=None)

	Main class, extracting data from the BUFR file.

This object uses subprocess.Popen to call the Geo::BUFR bufrread.pl
file (see http://search.cpan.org/dist/Geo-BUFR/lib/Geo/BUFR.pm,
https://wiki.met.no/bufr.pm/start). If not installed None will
be returned. To install Geo::BUFR check the readme of the package.
It is as simple as:

cpan Geo::BUFR

Please note that you will also have to have the BUFRTABLES installed on
your system at either one of the default locations or by setting the
environment variable BUFR_TABLES=<path> corresponding to the location
of the bufr files.

BUFR Tables can e.g. be downloaded here:
<https://software.ecmwf.int/wiki/display/BUFR/BUFRDC+Home>`_. The files in
this archive are named .txt while .TXT files are expected. bufrread.pl
will drop a corresponding message. Simply link the .txt files to a corresponding
.TXT version in your BUFR_TABLES folder to get around this.

	Parameters

	
	config (str) – Name of the config file.

	stint (str) – Used to store a flag into the database
from which source the messages come. In this case “bufr”.
Keep in mind that the database column type is “ENUM” and
only allows a distinct set of strings.

	verbose (bool) – Boolean True/False whether the object
should be verbose or not.

	filterfile (str) – Default is None, a filter file can be
specified forwarded to Geo::BUFR bufrread.pl.

	
__check_bufrdesc_and_add_if_necessary__(rec, param)

	Adding bufr entry to database table bufrdesc if
necessary. Input rec is a bufrentry object. Input param has to be of
class paramclass. Checks if entry is already in the bufrdesc database.
If not, we have to add a row.

	Parameters

	
	rec (bufrentry) – Object to be added.

	param (bufrdesc) – Bufr description object.

	
__check_displacement__(rec)

	Check if current record is a time displacement specification.
If so the value of the time displacement value will be returned
as int in seconds. If not bool False is returned.

	Parameters

	rec (bufrentry) – Object to check.

	Returns

	Returns bool FALSE or int.

	
__check_sensorheight__(rec)

	Check if current record is a sensorheight specification.
If so the value of the sensorheight value will be returned
(float). If not a bool False is returned.

	Parameters

	rec (bufrentry) – Object to check.

	Returns

	Returns bool FALSE or float.

	
__check_verticalsign__(rec)

	Check if current record is a vertical significance specification.
If so the value of the vertical significance value will be returned
(absolute value as integer). If not a bool False is returned.

	Parameters

	rec (bufrentry) – Object to check.

	Returns

	Returns bool FALSE or int.

	
__get_param_obj__(search, displacement, verticalsign, sensorheight)

	The config file bufr_config.conf contains a set of
parameter definitions. This method is used to finde the appropriate
parameter description given the inputs which directly come from the
BUFR entry extracted from the BUFR file using Geo::BUFR buffread.pl.

We are therefore matching each data line from the BUFR file with one
of our specified parameter configs from the bufr_config.conf
and use them to further process the data.

	Parameters

	
	search (burentry) – Bufrentry object.

	displacement (int) – Lates time displacement value, seconds.

	verticalsign (int) – Latest vertical significance value.

	sensorheight (float) – Latest sensor height value.

	Returns

	Returns two values, the first one is a bool whether to
drop the message or not. If no parameter entry can be matched to
the current bufrentry this value is True (drop message, unknown).
Else False will be returned (don’t drop). The second argument
is bool False if we cannot find the parameter entry, or
a parameter entry of class bufrdesc else.

	
__getval__(x)

	Get value: if the value is a string: simply return.
Else convert value to float. If the value is extremely
large or extremely small: return MISSING_VALUE.

	Returns

	Properly prepare the value.

	
__read_bufr_file__(file, filterfile=None)

	Function reading the BUFR file. Actually calling the perl
Geo::BUFR library to convert the binary files into ASCII table
and pase the output to extract the necessary information.

	Parameters

	
	file (str) – Path/Name of the BUFR file (binary file).

	filterfile (str) – Default None, dan be set and will be
forwarded to Geo::BUFR bufrread.pl to set specific filters.
If set only this subset of the bufr file will be extracted/processed.

	Returns

	Returns a list of lists, each containing a set of bufrentry
objects. The length of the most outer list corresponds to the number
of messages in the BUFR file. The first nested lists are the messages
each consisting of a set of bufrentry entries with the data.

	Return type

	list

	
__showdata_sort_order__(force=None)

	Takes care of the order of the columns in the output.

	
__weakref__

	list of weak references to the object (if defined)

	
commit()

	Alias for MySQLdb.commit.

	
cursor()

	Alias for MySQLdb.close.

	Returns

	Returns a MySQL.cursor object.

	
dbClose()

	Alias for MySQLdb.close.

	
dbConnect()

	Method to open the database connection. Uses the settings
on self.config. No return, saves the database handler on the
object itself.

	
extractdata()

	Looping trough self.raw (raw information returned by
__read_bufr_file__ and prepares the data.

	
load_bufr_description(table)

	Loading data from ‘table’ and returns a list object containing
one ‘bufrdesc’ object for each of the rows in the database.

	Parameters

	table (str) – Name of the database table containing
the bufr descriptions.

	Returns

	Returns a list of bufrdesc objects containing
the definition/description.

	Return type

	list

	
manipulatedata()

	Manipulate data. Is looking for some meta information such as
wmoblock, statnr, year, month, hour, and minute
and creates the columns datumsec (unix time stamp), stdmin
(hour/minute integer, e.g., 7:00 UTC is 700), and statnr (a combination
of the wmoblock and station number information from the bufr file).

	
prepare_data()

	Prepares the data.
Puts the data we found bevore in the single messages into
a matrix style variable called “res”. Stores parameter
(column description of the matrix) and the data matrix into
self.PREPARED.

	
showdata()

	Helper function to print the data to stdout.

	
showdropped()

	If a bufrentry cannot be attributed (is not defined by bufr_config.conf)
we will ignore these lines. To see what has been dropped and whether there
is important information being dropped the dropped lines will be kept.

This method allows to print the dropped lines to stdout.

	
update_stations()

	Update station database. Update the station database with the
information from the bufr message. Plase note that we do simply
update the database row and do not take care of history (e.g.,
if a station would be renamed or moved the latest name/location
will be stored and the old information is simply overwritten).

	
write_to_db()

	Write data to database.

Class: bufrentry

extractBUFRperl::extractBUFR uses the perl library
Geo::BUFR [http://search.cpan.org/dist/Geo-BUFR/lib/Geo/BUFR.pm] bufrread.pl
to extract the binary BUFR files (called internally via subprocess.Popen)

The script bufrread.pl returns the content of the BUFR file in ASCII where each
line in the data section corresponds to one BUFR entry.
extractBUFRperl::extractBUFR stores each line in a
extractBUFRperl::bufrentry object which are easy to iterate over.

	
class extractBUFRperl.bufrentry(string, width)

	This is a small helper class. I store all entries from the
bufr file in such bufrentry classes. A bufrenry class contains
the specification of one single message.
E.g., bufrid, value, description.

	Parameters

	
	string (str) – A bufrentry is a line as extracted by
the Geo::BUFR bufrread.pl perl script.

	width (int) – bufrread.pl allows to set a width for the
description column. This width has to be known by bufrentry
to be able to properly extract the information from this line.

	
__weakref__

	list of weak references to the object (if defined)

	
show()

	Allows to print the content of this object, mainly for development.

	Returns

	No return, creates output on stdout.

	
string()

	Helper method to output the content of this object to console.

	Returns

	Returns the information from the object in a string format.

Class: bufrdesc

The class extractBUFRperl::extractBUFR uses
extractBUFRperl::bufrdesc classes to handle the bufr parameter
configuration read from the bufr_config.conf file. Each entry
(bufrentry) read from the BUFR file has to match a parameter configured
in bufr_config.conf and will be dropped else.

For ease of use the configuration of bufr_config.conf is read piece-wise
and each config is stored as a extractBUFRperl::bufrdesc object.

	
class extractBUFRperl.bufrdesc(rec, cols)

	This is a small helper class. I am loading the bufrdesc database
as a list ob such bufrdesc classes which are easily iteratable.
Used to store each record (each row of the
bufrdesc database table as an object which
is easy to iterate over.

	Parameters

	
	rec (tuple) – A record from the bufrdesc database table.
The elements of the tuple are described
by the second input argument cols.

	cols (list) – List of str describing the elements
in the first argument (rec tuple).

	
__weakref__

	list of weak references to the object (if defined)

	
get(what)

	Returns element corresponding to input string ‘what’.
If we cant find it in the columns from the database: stop!

	Parameters

	what (str) – Element to be returned.

	Returns

	Returns the corresponding element if available, else stop.

	
show()

	Shows content of the object

blitzortung

I dont want to spend too much time to explain this mini thing.
The Institute for Atmospheric and Cryospheric Sciences (ACINN) [http://acinn.uibk.ac.at]
is a member of the Blitzortung.org [http://blitzortung.org] network
and allowd to redistribute the raw data. At the ACINN there is a script
running to procude live lightning data plots. During this process a small
sqlite3 file is created which is copied via ssh to the prognose
server (into the blitzortung folder of this repository).

The blitzortug.R script is run every X minutes
via cron and checks the current sqlite file to draw a small map for each
of our Wetterturnier cities (specified via stations.txt)
and places a figure and a small file containing information about the last run
(to check whether the data are outdated) in the blitzortung folder.

This folder is linked to the webserver to grant access on the frontend, namely
via Wetterturnier Wordpress Plugin Lightning Activity Widget [http://wetterturnier-wordpress-plugin.readthedocs.io/en/latest/thewidgets.html#lightning-activity] .

Note

If there is someting wrong with the data one might ask Reto Stauffer
or Georg J. Mayr (from the ACINN) to see wheter there is someting wrong
or has been changed.

Todo

If we could replace this script with a python script we might be
able to somewhen remove the R installation from the server (except the
data handling from the not yet published and not yet finished R package
wetterturnier, ask Reto Stauffer).

To get the code run (requires the sqlite3 file from the sqlite folder):

Simply to this:
Rscript blitzortung.R

Database Tables

live

The live table is used to store incoming observations. Please note that
only a subset of all columns is shown in the table below. The script processing
the observations and saving them into this database table automatically creates
additional columns if there are data. ... in the table indicate the data
columns (e.g,. temperature observations, cloud cover observations, …).

The live table is a rolling database containing the latest observations for
all incoming stations. The script CleanUp.py cleans the database from time
to time moving the observations for some specific stations into the
archive database table and deletes all others.

[Autogenerated table scheme of table “live] Rolling database for (raw) incoming observations.”

	Field

	Type

	Null

	Key

	Default

	Extra

	statnr

	int(11)

	NO

	MUL

	None

	

	datum

	int(8)

	NO

	MUL

	None

	

	datumsec

	int(11)

	NO

	MUL

	None

	

	stdmin

	smallint(4)

	NO

	
	None

	

	msgtyp

	enum(‘na’,’bufr’,’synop’)

	YES

	
	na

	

	stint

	enum(‘na’,’essential’,’additional’)

	YES

	
	na

	

	utime

	timestamp

	NO

	MUL

	CURRENT_TIMESTAMP

	

	ucount

	tinyint(3) unsigned

	YES

	
	0

	

	…

	…

	…

	…

	…

	…

	Non-unique key named bufr_statnr on (statnr)

	Non-unique key named bufr_datumsec on (datumsec)

	Non-unique key named bufr_datum on (datum)

	Non-unique key named bufr_einspiel on (utime)

	Unique-key named bufr_statnr_datumsec_msgtyp on (statnr, datumsec, msgtyp)

archive

The archive table has the same structure as the live
database table and contains long-term archive data for a set of specified
stations. We keep the data for the tournament stations and drop all others
as we don’t want to keep a copy of all observations (would be a huge database
and an unnecessary and unused copy of everything).

[Autogenerated table scheme of table “archive] Archive table, contains long-term observations (copy of the live table) for specified stations.”

	Field

	Type

	Null

	Key

	Default

	Extra

	statnr

	int(11)

	NO

	MUL

	None

	

	datum

	int(8)

	NO

	MUL

	None

	

	datumsec

	int(11)

	NO

	MUL

	None

	

	stdmin

	smallint(4)

	NO

	
	None

	

	msgtyp

	enum(‘na’,’bufr’,’synop’)

	YES

	
	na

	

	stint

	enum(‘na’,’essential’,’additional’)

	YES

	
	na

	

	utime

	timestamp

	NO

	MUL

	CURRENT_TIMESTAMP

	

	ucount

	tinyint(3) unsigned

	YES

	
	0

	

	…

	…

	…

	…

	…

	…

	Non-unique key named bufr_statnr on (statnr)

	Non-unique key named bufr_datumsec on (datumsec)

	Non-unique key named bufr_datum on (datum)

	Non-unique key named bufr_einspiel on (utime)

	Unique-key named bufr_statnr_datumsec_msgtyp on (statnr, datumsec, msgtyp)

stations

Station information as read from the BUFR files.

[Autogenerated table scheme of table “stations] Station meta information as received from the BUFR messages. Rows will be updated, no historical information kept (if a station e.g., would be moved or renamed).”

	Field

	Type

	Null

	Key

	Default

	Extra

	statnr

	smallint(11) unsigned

	NO

	MUL

	None

	

	nr

	tinyint(3) unsigned

	NO

	
	None

	

	name

	varchar(150)

	YES

	
	None

	

	lon

	decimal(10,4)

	NO

	
	None

	

	lat

	decimal(10,4)

	NO

	
	None

	

	hoehe

	smallint(6)

	NO

	
	None

	

	hbaro

	smallint(6)

	YES

	
	-999

	

	changed

	timestamp

	NO

	
	CURRENT_TIMESTAMP

	

	Non-unique key named stations_statnr on (statnr)

bufrdesc

BUFR description as read from the BUFR files.

[Autogenerated table scheme of table “bufrdesc] Stores bufr data description handlers. Contain variable description and original BUFRID.”

	Field

	Type

	Null

	Key

	Default

	Extra

	bufrid

	smallint(3) unsigned

	NO

	
	None

	

	param

	varchar(35)

	NO

	PRI

	None

	

	desc

	varchar(150)

	YES

	
	None

	

	unit

	varchar(35)

	YES

	
	None

	

	period

	mediumint(8) unsigned

	YES

	
	0

	

	offset

	float

	YES

	
	0

	

	factor

	float

	YES

	
	1

	

	changed

	timestamp

	NO

	
	CURRENT_TIMESTAMP

	

	Unique-key named bufrdesc_param on (param)

Index

 _
 | B
 | C
 | D
 | E
 | G
 | L
 | M
 | P
 | S
 | U
 | W

_

 	
 	__check_bufrdesc_and_add_if_necessary__() (extractBUFRperl.extractBUFR method)

 	__check_displacement__() (extractBUFRperl.extractBUFR method)

 	__check_sensorheight__() (extractBUFRperl.extractBUFR method)

 	__check_verticalsign__() (extractBUFRperl.extractBUFR method)

 	__get_param_obj__() (extractBUFRperl.extractBUFR method)

 	__getval__() (extractBUFRperl.extractBUFR method)

 	__init__() (synopsymbol.synopsymbol method)

 	
 	__read_bufr_file__() (extractBUFRperl.extractBUFR method)

 	__showdata_sort_order__() (extractBUFRperl.extractBUFR method)

 	__weakref__ (extractBUFRperl.bufrdesc attribute)

 	(extractBUFRperl.bufrentry attribute)

 	(extractBUFRperl.extractBUFR attribute)

 	_open_figure_() (synopsymbol.synopsymbol method)

 	_save_figure_() (synopsymbol.synopsymbol method)

B

 	
 	bufrdesc (class in extractBUFRperl)

 	
 	bufrentry (class in extractBUFRperl)

C

 	
 	cleanup (class in cleanup)

 	cleanup_live_table() (cleanup.cleanup method)

 	
 	closeDB() (cleanup.cleanup method)

 	commit() (extractBUFRperl.extractBUFR method)

 	cursor() (extractBUFRperl.extractBUFR method)

D

 	
 	dbClose() (extractBUFRperl.extractBUFR method)

 	
 	dbConnect() (extractBUFRperl.extractBUFR method)

 	delete_old_raw_files() (cleanup.cleanup method)

E

 	
 	extractBUFR (class in extractBUFRperl)

 	
 	extractdata() (extractBUFRperl.extractBUFR method)

G

 	
 	get() (extractBUFRperl.bufrdesc method)

 	
 	getOldFiles() (cleanup.cleanup method)

L

 	
 	live_database_to_archive() (cleanup.cleanup method)

 	
 	load_bufr_description() (extractBUFRperl.extractBUFR method)

M

 	
 	manipulatedata() (extractBUFRperl.extractBUFR method)

P

 	
 	prepare_data() (extractBUFRperl.extractBUFR method)

S

 	
 	show() (extractBUFRperl.bufrdesc method)

 	(extractBUFRperl.bufrentry method)

 	showdata() (extractBUFRperl.extractBUFR method)

 	
 	showdropped() (extractBUFRperl.extractBUFR method)

 	string() (extractBUFRperl.bufrentry method)

 	synopsymbol (class in synopsymbol)

U

 	
 	update_stations() (extractBUFRperl.extractBUFR method)

W

 	
 	write_to_db() (extractBUFRperl.extractBUFR method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/screenshot_frontend.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Wetterturnier Wordpress Plugin

_static/up.png

_static/up-pressed.png

